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ABSTRACT 

The report Investigates scattering from a rough surface when trans- 

mitter and receiver are at a finite distance from each other,  so that 

the sphericity of the incident and scattered waves has to be taken into 

account.    The calculation is complicated by the fact that, unlike the 

case of plane waves,  the equlprobabillty planes of the surface do not 

coincide with the equlphase surfaces, and therefore a number of simpli- 

fying assumptions are made, in particular, geometric optics are used. 

The phase distribution of the scattered field by approximate integra- 

tions.    From this,  the other quantities of Interest can be found.    Ihe 

results are compared with the measurements performed by Beard using 

microwaves and a random water surface with known statistical properties. 
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1.     INTRODUCTION 

When a rough surface  generated by a stationary  random process  is 

illuminated by a plane wave and the scattered  field is  observed  far in 

the  Fraunhofer    zone  (i.e.,   the scattered waves may be  considered plane), 

the  reflection points  on  the surface resulting in the same phase  $ at 

the  receiving point  are on a plane z - const,  where z is measured from 

the mean plane of the surface.     These equiphase planes are thus identi- 

cal with  the equlprobabllity planes Z « z, where  Z is  the deviation of 

the surface from its mean plane,  a random variable  (here assumed normal). 

The ultimate root  of the difficulties encountered in an investiga- 

tion of non-plane wave illumination and scattering is  the fact that the 

equiphase surfaces are no longer identical with  the equlprobabllity sur- 

faces.    The equlprobabllity surfaces are given by p(z) ■ const, where 

p(z) is the probability density of Z; as before,   the equlprobabllity 

surfaces are therefore given by the planes z ■ const   (Figure 1).    How- 

ever,   the locus of reflection points yielding  the same phase at  the re- 

ceiver,  when both are at  a height h above <Z> and separated by a dis- 

tance D,  is a rotational ellipsoid with foci at  the  transmitting and 

receiving points,  T    and  R  ,  respectively. 

The resulting phase  distribution at  the receiver will under these 

conditions be asymmetrical,  which leads to further consequences rarely 

met  in plane wave propagation.    To see qualitatively why the phase dis- 

tribution is asymmetrical,   consider the  case when the standard deviation 

aw of the surface is very small so that  the surface deviates only very 

slightly from a plane   (Figure 2).    For plane wave  illumination and scat- 

tering,   this would obviously result in a received phase that only very 

slightly deviates  from its mean.    However,  for spherical waves,  the 

phase is given by ^ « k(r1 + ^K    Let  the point x » 0, y - 0  (when 

Z - 0)  give rise  to a phase  <j>0.     Smaller phases are possible,  though not 

very probable;  they will occur only when Z(0,0)  goes positive.    On the 

other hand,  phases  larger than 4>0 will occur very often,  since practi- 

cally any reflecting point with coordinates other than x ■ 0, y " 0 will 

give  rise to a phase  larger than ^0.    The phases near the value  *    will 

mtt 
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occur for reflecting points In the first Fresnel zone, and since this Is 

the largest,  the probability density of <j> can be expected to have a max- 

imum near this value.    For the reasons Just given,  this probability den- 

sity should then fall off quickly from this maximum towards smaller 4», 

and slowly towards larger $ as shown In Figure 3.    Thus, p(^) will be 

asymmetrical. 

The main effort of this report Is to derive this phase distribu- 

tion; once this Is established,  the other quantities of Interest,  In 

particular, the distribution of the scattered field, and hence the mean 

scattered power,  the behavior of the phase-quadrature components, etc., 

can be derived from this phase distribution by previously established 

methods  (Beckmann,  1962; Beckmann and Splzzlchlno,  1963). 

The calculation Is Involved and It was not found possible to arrive 

at practically useful results unless a number of simplifying assumptions 

were made.    These are the following; 

(A) Geometric optics are valid; only waves reflected from a favorable, 

or nearly favorable, slope (making the local angle of incidence 

equal to the local angle of reflection) will reach the receiver. 

(B) The equiphase surfaces are elliptical cylinders rather than rota- 

tional ellipsoids; near the plane y - 0  (where most reflections 

must be expected)   the two are identical and thus the problem is 

reduced from a 3-dlmenslonal one to a 2-dlmensional one. 

(C) The transmitting and receiving antennas are at the same height h 

above the mean rough surface. 

(D) The rough surface is generated by a stationary normal process in 

the x direction. 

Assumptions  (C) and (D) may be withdrawn at the cost of mathemati- 

cal simplicity,  and the same Is essentially true of Assumption (B), 

though this will lead to Integrals of almost prohibitive complexity; but 

Assumption (A)  is essential to the method to be used. 
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Fig.   1.       Equiprobability and equlphase surfaces. 

Z(0.0) 

Fig.   2.      Qualitative derivation of  the phase distribution. 
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In addition Co the above simplifying assumptions, approximate pro- 

cedures are used to evaluate some otherwise Intractable Integrals.    In 

spite of this coarse treatment,  the  final results appear to be at least 

In qualitative agreement with experimental results, so that  the method 

should be useful for providing physical Insight,  If not precise numeri- 

cal results. 

2.     PHASE DISTRIBUTION OF THE SCATTERED FIELD 

Consider the distance (or "geometric nhaie") 4 from T    to R   via a 

reflection oolnt P  (Figure 4).    For a giver *, the reflection point must 

lie on an ellipse with semlmajor axis 

a - »$♦ (1) 

and semlmlnor axis 

b - 2   D- (2) 

where D ■ 2d Is the distance between transmitter and receiver. The 

equation of the ellipse Is 

Z2      x2 

fr + ir-i   • (3) 
In the following only the lower left quadrant of the ellipse Is 

considered:     the upper quadrants are Irrelevant because the surface Z(x) 

has such a small standard deviation o    that It Is practically Impossible 

for Z(x) 2 h to be satisfied, and the lower right quadrant only rein- 

forces all effects by symmetry. 

Consider now a fixed propagation distance or geometric phase 4 

assuming that the reflection point was located near a height Z ■ z. 

This uniquely determines the x coordinate of the reflection point and 

is determined from (3)  for Z - z: 

a^b2 - z2 ... 
\ £  (4) 

Upper and lower case $ and $, respectively the geometric and elec- 

trical phases, are sufficiently similar in form that care should be 

exercised to prevent confusion. 

■BMBHi 
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Fig. 3.  Asymmetrical character of the phase distribution. 

Fig. A.  Basic quantities for calculating the phase 

distribution. 
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The slope of the ellipse at any point is from (3) 

Z'Cx) bx 

i/a2 - x2 
(5) 

and hence the slope at the reflection point  (if reflection towards the 

receiver is to occur) must be,  as obtained by substituting  (4) for x. 

Z'(xz) 
hSW (6) 

The probability of this being the case is found from the distribu- 

tion of Z', which is normal and stationary»  since Z is normal and sta- 

tionary, with mean square value 

,•2 - <Z,2> - - B"(0) (7) 

where B(T) is the correlation function of Z(x). 

Thus,  Lhe density of Z*  is 

pCz') 
T /   TV

2
\ 

r/z? exp " TT^j w \ w   / 
(8) 

where 

a w 
T  ■- 

(9) 

This quantity, which has  the dimension of a length,   is in effect a 

decorrelation distance; if the correlation function is Gaussian, T is 

equal to the correlation distance defined as the distance  for which  the 

autocorrelation coefficient decreases to e-1;  for other correlation 

functions,  T differs from the correlation distance only by a constant 

factor.     Note that o'   is the rms slope of the surface. 

From (6),   (7)  and (8) we obtain the conditional probability density 

of 4 given that the reflection takes place at height z: 
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2
1 

w w (10) 

where $ is  contained implicitly in the quantities a and b^ through   (1) 

and   (2). 

The probability distribution p(*)  is now obtained from the Theorem 

of Total Probability by integrating over all z: 

pC*) =    J p(*|z)p(z)dz (11) 

where the density of z is 

P
(Z)

 
= ^727 exP 

(z - h)2 

2a  2 (12) 

Substituting  (10) and  (12)  in  (11) we obtain 

P(*)  - 2^-2    I exP 
w    -00 

birlibi-zil . Iz^hl; 
2azzzo 2 2o 2 

w w 
dz (13) 

To evaluate this integral exactly is  a fairly hopeless task,  and 

therefore the Laplace method of integration is used.    We denote the ex- 

ponent by E(z)  and find the point z0  for which it is maximum from the 

condition 

E'U) - 0 (14) 

Expanding the exponent in the neighborhood of this point (from which the 

integral obtains its greatest contribution), we obtain on retaining 

terms up to the quadratic term. 

p(*) 
xe E(z0) 

2TTa 
J exp 

w 

E"(zo) 
(z - zo)2 dz 

E(0 

SÜ aj  •/=~iTl(z ) 
(15) 



To solve the cubic equation resulting from  (14), we  obtain by New- 

ton's method 

z    s» h 
o (16) 

so that after some algebra one obtains 

T exp 

p(*) - 

b2T2(b2 - h2) 
2a2h2a ~ 

w 
s(<t) 

(17) 

where 

■<»> - °wH^W) (18) 

Substituting from (1) and (2), this yields 

.(*) . __^. _[. (t2 -D2M»2-D2-4h2)T2l ?i9)     a 8(«) expl        8*2h2a 2       J W        L w J 
(19) 

Note that this expression has been obtained from  (13)  by consider- 

ing the contribution from the region near z » h, but that the result 

will be accurate only if the factor multiplying  (z - z0)2 is  large(guar- 

anteeing that almost all of the contribution to the integral is concen- 

trated into  the considered region),   i.e., 

2T2 b^T 
2a2a 2 

w 
>> 1 (20) 

In practical applications ow << T, so that (20) will be well satis- 

fied for probable phases *, for which a  is of the same order as lb. How- 

ever, for the highly improbable phases ♦ -► D (corresponding to the sur- 

face rising to a height where it will interrupt the direct ray from 

transmitter to receiver), the ellipse will approach the segment T R 

b -»• 0, and (20) is violated.  Thus (19) is valid only for probable 

\ 



phases or larger.     To restore the validity of  (19) we therefore only 

need to Impose a lower limit on  <I>.    This is found as  follows.    We con- 

sider the normal distribution of  the surface truncated at h - 3öW (in- 

curring an error of less than 0.5  percent), which corresponds to a mini- 

mum phase   (attained only at the point x = 0) 

*    = /Dz+ A(h - 3o )2 

m w 
(21) 

or,  since by assumption ow  << h. 

$    = /D2  + 4h2 

m 
(22) 

The phase distribution may then be written in the form 

p(*) 
CT 

0 s(*) 
w 

exp - 

($2  _ D2)($2   _  $  2)T2 
m 

8*2h2c 
w 

(23) 

where the normalization constant  C is found from the condition that  (23) 

must integrate to unity.    To perform this integration,   the Laolace 

method of integration is again used.    The exponent is now maximum for 

o m 
(24) 

But,  since from (22) 

m \        20^ ' (25) 

and in practical applications h/D << 1, we are justified in writing  (24) 

as 

o  ~    m (26) 

Substituting for s(*)   from   (18)  and noting that 

(* 2  - D2)' 
(27) 
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we  find 

•^V ■ ^(l + w^)w ^ 

so that the phase distribution Is from (23) 

exp 
w 

(28) 

T2(*2 - * )2(*2  - D2) 

 sifc^ h2/2D2 
w 

(29) 

or.  If It Is approximated by Its expansion near Its maximum as above, 

r f?   r t2<* - *J21 
pW,-L-^exp    .      ^f (^i^.) (30) 

Transforming from the geometric phase 

through 

41 to the electrical phase $ 

we finally find 

,4,   T ji   r '♦-yvi 
■<W " iSrVi e,",    "    2kVc 5 

w      L       w  J 

where 

* - k* - k^D2 + 4h2 
m    m 

(31) 

m 
< (J, i ») (32) 

(33) 

This Is the phase distribution to be used for the calculation of 

the scattered field. 

3.  ROTATION OF THE VARIANCE ELLIPSE 

The phase of the received field Is a random variable, and the re- 

ceived field Is therefore conveniently decomposed into two components; 
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Phaser 

^Variance Ellipse 

Fig.   5.  The variance ellipse for the scattered field. 
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one In phase with the  field reflected by a smooth plane, and the other 

perpendicular to It.     These two components will be referred to as  the 

real and imaginary component, respectively,  of the scattered field, 

since it is convenient to plot the received field in the complex plane. 

Since both components represent the sum of a large number of random 

quantities,  namely  the waves scattered from each of the reflection 

points on the surface,  both components will be normal and the received 

field is  therefore  described by a two-dimensional normal distribution 

(real component X,   imaginary component Y).     The equiprobability curves 

for the two-dimensional normal distribution,  as is easily shown by ana- 

lytical geometry,  are ellipses centered at X ■ <X>,  Y ■ <Y>;  their axes 

have identical directions, one of which makes an angle C0 with the real 

axis X (the other direction differs by 90°).    The angle C0 is found from 

the relation 

tan 2i 
2cov(XtY) 
n   2   _   „   2 (34) 

where a^2,  ay2 are the variances of the X and Y components,  respectively. 

Thus, the ellipses of the  family of equiprobability curves differ only 

by their major and minor axes;  the centers and directions are identical. 

One oi these is the "variance ellipse";  this is the one whose major and 

minor axes oei,  oe2   (not necessarily respectively),  are related to the 

variances of X and Y through 

el 
2 + a    2 

e2 
0x2 + V (35) 

It can be shown that 

o 2 - o    2 cos2C   + o    2 sin2C X el o        e2 o 

o 2 ri a    2 sin2C    + a    2 cos2? Y el o        e2 

(36) 

and hence 
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ei 

e2 

o^.2 cos2f,    - o„2  sin2^ 
X o Y o 

cos2C 

o„2 cos2^    - o  2  sin2?; 

cos2'; 

(37) 

To relate  these quantities to the phase distribution p((}>),  we note 

that in our geometric-optics model the received  field is produced by  the 

interference of the waves  reflected by n reflection points on the sur- 

face,  so that  (apart  from an unknown constant of proportionality which 

can be absorbed into the equally unknown number n) 

n 
I       COS(i 

j-l 
Y =    ^     sin* 

j 
(38) 

Denoting the means  of X and Y by 

a ■ nJp((|i)cos<(id(|> 

ß ■ n/p((())sinijid<|) 

we find the variances  in the form 

X 
j[l + Jp(*)cos2*d^- ^-J 

|[l - /pU)cos2(M<t- ^T-J 

(39) 

(AO) 

(41) 

(42) 

The covariance of X and Y is after a little manipulation using the 

fact that the (|IJ  are independent found to be 

cov(X,Y)  = n/p((|>)cos(()sin((>d(t) - a6 (43) 

so that on substituting the last three results in (34) we obtain 



14 

tan2£ fp((i>)8ln2(lid(|) - 2aß/n2 

/pU)co82(M - 0t    '2* 
(44) 

This relation reveals a marked difference between the scattering of 

plane and spherical waves from a normal (or any other symmetrically dis- 

tributed) surface:  For plane waves, the phase distribution of a symmet- 

rically distributed surface is also symmetrical, so that the denominator 

of (44) vanishes (ot, if other coordinates are Introduced, is constant); 

for spherical waves emanating from the transmitter at a finite distance 

from the surface, however, we found a symmetrically (normally) distri- 

buted surface to result In an asymmetrical phase distribution (32), so 

that as the variance of the surface, and hence the variance of <j) in- 

creases, C0 will by (44) change, i.e., the variance ellipse will rotate. 

Relations (39) through (44) establish the connection between the 

scattered field and the phase distribution.  In the next section, these 

quantities will be evaluated when (32) is substituted for p($). 

4. CALCULATION OF THE PHASE QUADRATURE CCMPONENTS OF THE SCATTERED FIELD 

To find the mean of the real component of the scattered field, we 

substitute (32) in (39); on setting (j) - ^ - t, this becomes 

nT 
kho 

j       0        L w J 
cos(t + 41 )dt 1       m 

(45) 

On expanding the cosine,  the two resulting Integrals can be evalu- 

ated by using the Integrals 

jVAt2cosBtdt - ^ e-B2/4A (46) 

and 

I e~At sinBtdt - ~7 « 
B_   -B2/4A 

2A sM*2'") (47) 
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where jF]  is the  confluent hypergeometrlc  function.    After some tedious, 

though straightforward,  calculations,   the  result can be expressed in 

terms of the parameter 

k2h2o  2 

K -      -  2
W (48) 

and the auxiliary variables 

C - e^. "-Vfe'KiFi(rl{K) (A9) 

Then  (45)  yields 

a - n(Ccos(|)    - nsin* ) (50) 
tn m 

Similarly,   for the mean of the  imaginary component one finds 

ß - n(Csin())    + ncos<fi ) (51) 
m tn 

To evaluate the integrals occurring in (44), we introduce the aux- 

iliary quantities 

-4K y  - e       , v-2V^e"4Vi(H;4K) (52) 

One then finds 

/ p((|»)cos2<J)d4i - ycos2(j)    - vsin2(|» (53) 

m 

/ p(*)sin2(t)d(|> - ysin2<ti    + vcos24i (54) ' mm 
*m 

so that on substituting these results in   (44) one obtains 
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i*w»r^ipw^i^p» 

tan2C 
tan2(fr   +     v ~)2P 2 ym      u - £2 + n2 

y - 5^ + n m 

(55) 

This can be written In the form 

^    - (J    + %arctan  -n ~ ; (56) 

or discarding the auxiliary variables by (49) and (52), 

(|) + ^arctan 
n 

-2K 

(57) 

Since by (48)  < Is proportional to ow
2, this establishes the rota- 

tion of the variance ellipse with the variance ov
2 of the rough surface. 

For practical applications,  the approximate expressions of iFj  for 

small and large < are listed here for reference purposes: 

sM-) 1 + -J tc (K   «   1) (58) 

F /Li   \ ^ el 
l,?l\2,2,K/      2K 

(< » 1) (59) 

For the variances of the real and imaginary components one obtains 

from (41),   (42),  and (53),   (54) 

ov
2 ■ T 1 + wcos2(|>    - vsln2()i   - 2Ucost   - nsin* )2 

X        2 L m mm m   J 

o«2 " 7 1 - Pcos2({.   + vsln2(|»    - 2Usint   + ncos* )2 

YzL m m m mj 

(60) 

(61) 

—*mt^^mm ■MB 
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The total variance of the scattered flald, which is proportional to 

the incoherently scattered power  (at  the receiving point)  is  therefore 

o2 - a 2 + a 2 - n(l - C2 - n2) (62) 

As was to be expected, this is independent of $m.    The above rela- 

tion also satisfies the physical requirements 

lim o2 - 11m o2 - 0 (63) 
a -^o    K-*O w 

lim o2 » lim o2 - n (64) 
(J -H»       K-X» 
W 

To find the ratio of the major to the minor axis of the variance 

ellipse 

K-^LH — J (65) 
min fc) 

where the exponent +1 or -1 is chosen so as to make K2 > 1, we take the 

ratio of the two expressions in (37), obtaining 

(k2 - tan2?o V 
1 - k2tan2C0) 

±1 

(66) 

where 

2 

k2 - -~ (67) 
o 2 

or substituting from (60) and (61), 

1 - C2 - n2 + (n2 - C2 + w)co82(>m + (2?n - v)sin2*in 

k ' 1 - Cz - nz - (nz - C2 + w)co82* - (2Cn - v)8in2*     (68) 

m m 

. -oc .    ^ 
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so that k2, and hence K2, depend on (J>m, i.e., on the geometric configu- 

ration determined (with accuracy of a fraction of a wavelength) by D and 

h in (33).  For ow -> ", i.e., K -► «, (67) yields k -► 1, hence 

lim K2 - 1 (69) 

w 

The  limit a    ■* 0,   i.e.,  K -»■ 0,  is more difficult to establish, 
w 

since 

lim K " lim y ■ 1 

lim n =  lim v ■ 0 

(70) 

so that  for K •*■ 0,  (68) becomes an indeterminate expression of tvpe 0/0. 

Expanding  5,  n,  u and v in terms  of K, we find 

:(2 --) - KU - -)cos2(t1    - 2KV£ 8in2^    +  ... \        TT /        \ IT/ m J__7r m  

:(2 - 5 + K(2 " ty™2** + 2^ 8in2*m + •*• 
(71) 

so that 

1 -  cos2()) 
lim k2 • TT^IT - tan2*m 
K-»-0 m 

(72) 

After a similar procedure one obtains from (56) 

nnr 
lim C    -  *    t ~      (m » 0,1) „o        m        / 
K-»-0 

(73) 

Substituting  (72)   and (73)  in  (66),  we have 

lim K2 = °° 
o ->-0 

w 

(7A) 

M 
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It will  later be  found that   (69)  agrees with experiment,  hut   (74) 

does not.     The  reason is  that   (69)   can be  derived directly   from  (41), 

(42)  and  (67)   for any distribution p(()));  on  the other hand,   the  above 

derivation shows  that   (74)  depends  very critically on  the  distribution 

p(4i),   for a minute  change in  the  latter will lead to a completely dif- 

ferent  limit   (74).     For example,   if   ())m = IUTI  (m =  1,   2,   ...),   then  the 

indeterminate  expression 0/0  in  (68)   cannot be  resolved until  the quad- 

ratic  terms   (i.e.,  terms in  aw
4)  are  taken  into account.     Obviously,   the 

approximations used in deriving p(i>)   cannot  achieve  the  required  accu- 

racy of up  to  and including  fourth-order terms  1P 

This point  is noted here because   (7^;   i     the    me  result  that  does 

not agree qualitatively with experimental ob.' .vation 

5.    MODIFICATION FOR SURFACES GENERATED DV A NARROW-;   ...D PROCESS 

The underlying idea of a saddle-pjint  integration in physical op- 

tics  to calculate the scattered field is the summation of the contribu- 

tions to the  scattered wave  from the neighborhood of a point with  favor- 

able slope on the surface.     (Saddle-point methods in physical optics 

thus  represent a transition  to geometric optics.)    As the distance from 

that point  increases,  the slope will change to a less  favorable one, 

which means  that the  scattered wavelets will increasingly be  out of 

phase with  the one scattered from the  favorable slope,  and therefore 

both the scattered wave and the integral will cease to obtain contribu- 

tions  as  the  immediate neighborhood of  a  favorable  slope is  abandoned. 

This is schematically shown in Figure 6  for a wide-band random process. 

However,   for a narrow-band process the situation is somewhat dif- 

ferent.     A  (mean-square continuous)  narrow-band process  consists  of ran- 

dom oscillations modulated by a slowly varying random envelope   (Beck- 

mann,   1967,   pp.  249-254).     As  shown  in  Figure  7,  several successive 

oscillations will produce a succession of points of  the  type  in Figure 6 

reflecting  favorable phases. 
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Since from (75) 

a"(0)    -    W'{0) + o 2 oj 2 (78) w      o 
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In calculating the field by physical optics,   the entire correlation 

function (which itself also consists of oscillations nodulated by a 

slowly varying envelope)  is  required, but this problem will take care of 

itself,  since there will be a corresponding succession of saddle points 

whose contributions will add up to yield the total scattered field. 

However,  since the  above analysis utilizes not the entire correlation 

function  (as it would in physical optics),  but only the RMS slope in 

(9),   the slope needed is not the slope of the random process itself, but 

that of its envelope.    The reason is that in geometric optics one looks 

for the slopes that will concentrate waves with equal phases;  it is ob- 

vious  from Figure 7 that this will be the slope of the envelope of a 

narrow-band process,  and not  the slope of the narrow-band process it- 

self  (which is much larger).     It can be shown [Beckmann,   1967, 

pp.   250-253,   (7-3.8),   (7.3-26),    (7.3-30)]   that the correlation function 

of  this envelope is equal to the envelope of the correlation function 

B(T) - a(T)cosa) T (75) o 

of a narrow-band process whose spectrum is symmetrical about some fre- 

quency a)0;  its rms slope is  therefore 

  o 
o1       -  /- a"(0)   -  —2- (76) 
env v '        T 

env 

so that 

• I 
,    -    0- I 

and B"(0)  < 0, we have 



ff «V 

21 

Spherical Wavelets 
Near in Phase 
Scattered Towards 
Receiver 

This Ray 
Out of Phase 

fie,.  6.      Single saddle point used for a wide-band process, 

Toward   Receiver 

(Several Points Separated 
by More than the Correlation 
Distance Reflect Waves With 
the Same Phase) 

Tangent Plane to 

ENVELOPE of Process 

Fig.   7.       Several saddle points  contribute to  the  integra- 

tion  for a narrow-band process;  this  is  equivalent 

to using a single  saddle point  of the  slowly varying 

envelope of  the  process and  its  correlation  function. 

i 
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a w 
env      ^"(0)1  -aw2 ^      ^p"(0)|   - %2 

(79) 

where 

C)-BJ^ P(T) - ^f (80) 
w 

is the autocorrelation coefficient of the random surface. 

6.     COMPARISON WITH EXPERIMENTAL DATA 

There have apparently been only two detailed experiments performed 

to investigate scattering from a rough surface at a finite distance from 

transmitter and receiver,  one by Beard  (1965,  1967),  and the  other by 

Clarke and Hendry  (1964).     Of these,  however,  only Beard has measured 

the parameters determined directly by the phase,  namely C0,  ael,  a^; 

Clarke and Hendry have only measured  the equivalent of ox,  Oy,  which Is 

ambiguous for determining the variance ellipse,  as can be seen from Fig- 

ure 5,  for C0 will change with aw as shown by  (44),   (57), and as also 

follows from Beard's  experiments. 

Beard (1965,   1967)  illuminated a rough water surface by microwaves 

with wavelength X m 2.83 cm.    The surface of water in a tank was per- 

turbed by injecting air or water into the water tank (in a region beyond 

the illuminated area).     By varying the Injection rate,  the standard de- 

viation ow of the water surface could be varied.    The transmitter and 

receiver antennas were separated by a distance D - 4.115 m (162 Inches); 

both were situated at  a height h - 0.869 m above the mean water level, 

yielding a grazing angle  i/; - 22.9° at  the origin Z(0,0)  in Figure 2. 

Thü distribution of the deviation of the water surface Z was mea- 

sured by Beard  (1965)   and found normal.    The  correlation function of the 

surface was measured by Beard in 1966;  these  data,  partly not yet pub- 

lished, were at the  author's disposal to enable the above theory to be 

compared with experiment.    These measurements show that  the random 
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process generating the water surface is narrow-band with a central fre- 

quency 2v
m 2.37 c/s.    The water waves thus generated propagate with a 

velocity (Stoker,   1957) 

v - - - 0.6584 m/s (81) 
O) 

where G = 9.81 m/s2 Is  the gravitational acceleration.     Beard's measure- 

ments   (1967) show that  the water surface can be considered partially 

"frozen" and moving along the water tank with the group velocity, which 

Is one-half of the phase velocity  (81)  for deep water waves.    It was 

also established that  the surface is strongly anlsotropic;  i.e.,   the 

correlation distance in the direction perpendicular to the waterflow  (y) 

is  Jiuch larger than in the  direction along the water flow (x), so that 

the assumption of o' i-dlmenslonal roughness is  to some extent justified 

(assumption D,  p.   ?,  assumes  an infinite correlation distance in the y 

direction). 

The correlation function envelope corresponding to a (T)  in  (75) 

was  found to be very close  to an exponential curve  for larger T  [see Fig- 

ure 8 in  (Beard,  1966)]; however,   for T -•■ 0, it has so far not been pos- 

sible to accurately measure B(T)  and its derivatives;   i.e.,  direct mea- 

surement of the mean square slope and the  correlation distance defined 

through it by (9), has not yet been performed.    On the other hand,  indi- 

rect    Inference of Tenv from the measured data.  I.e.,  by  (70), is not 

very accurate,  since B"(T)  Is not known for x -»• 0.     By use of various 

methods of estimating Tenv from the measured data,   it was found that 

Tenv is of the order of 1 meter. 

Beard's experimental results  (1965,  1967)  are plotted as a function 

of the variable 

o sinij; 
-— g (82) 

i 
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The variable  K used in the above  analysis and defined by  (48)   is 

therefore  related to g by 

/-< ^  g (83) 
T       »2 costy env 

For the values D ■ 4.115 m and ^ = 22.9° used in the experiment, 

this makes 

X'^-g (84) 
env 

As  Tenv is of  the order of 1 m, but its  exact value ^s not known, 

the value Tenv ■ 0.989 m was assumed so that   (84)  reduces  to the numeri- 

cally convenient relation 

/IT = 10 g (85) 

In Beard's experiment  (1965),  the random amplitudes of two compo- 

nents of the scattered field in phase quadrature were investigated.     The 

phase of these components with respect to the coherent part of the field 

could be varied at will  [which was not the case in the experiment by 

Clarke and Hendry   (1964)],  so that all characteristics of the variance 

ellipse in Figure 5, namely C0,  ax,  oy,  ael,  oe2 and K2 - amax/amin 

could be directly measured. 

The data measured by Beard for 50 as a function of aw in one of the 

experiments  (Beard,   1965,  Figure 29)  are shown in Figure 8.    This  is 

compared with  the  theoretically derived formula (57) where tc,  given by 

(48),  is  converted to g through  (85).     Equation (57)  also contains  the 

additive constant  4>m given by (33).    This constant cannot be accurately 

determined, since  <]>„, is of the order of hundreds of wavelengths,  and $m 

is determined by its  fractional part:   fy® can therefore not be accurately 

determined because,   among other reasons,  the  antennas are not  truly 
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Fig.   8.       Rotation of  the variance ellipse.     Experimental 

data by Beard  (1965),   theoretical  curve computed 

by  (57). 
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point sources  and therefore D cannot be determined with the  accuracy of 

a small fraction of a wavelength.    However,  this constant is  additive 

and does not change with the water roughness ow,  so that it simply rep- 

resents a reference phase which does not affect the function Co(aw^» 

except in shifting its plot up or down with respect to the origin.     In 

plotting Figure 8,   the additive constant (J>m was chosen so as to give the 

best fit with  the experimental data.     It can be seen that the  theoreti- 

cal curve calculated by (57) is in good agreement with the measured val- 

ues shown in Figure 8.    The orientation of the variance ellipse,  as 

shown by both  the theoretical analysis and the experimental data,   ro- 

tates with varying ow;  this does not happen for plane-wave Illumination 

and scatter;   i.e., when transmitter and receiver are far apart  and high 

above the rough surface  (Fraunhofer scattering). 

Good agreement is also obtained on comparing the theoretical formu- 

la (62), with  C and n given by (49), with the experimental data shown in 

Figure 9.     The experimental data are  those reported by Beard  (1967,  Fig- 

ure 16).    The ordinate plots o/(^, where Q. is the amplitude of the smooth 

surface coherent component.    The latter is a rather complicated function 

of the illuminated area and the gain function of the antennas   (Beckmann 

and Spizzichlno,  1963), but in this  case represents simply a multiplica- 

tive constant which can be absorbed Into n in  (62), so that   (62) has 

been plotted in Figure 9 with the multiplicative constant so chosen as 

to give the best fit to the measured data. 

The extreme values o^axt a^n could be obtained by using   (37)  and 

substituting  (60),   (61) for ox
2 and a 2;  a less tedious method is to 

calculate K first and then to use the equations 

;2 

max min 
max        2 

.2        "  K- Jmin 
(86) 

where the  right sides are known from (62) and (66)  respectively;  on 

solving (86)  one obtains 
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Fig. 9.   RMS scattered amplitude.  Kxperlmental data bv 

Beard (1966), theoretical curve computed bv (62) 
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Fig.   10.     Extreme values of  the variance of the scattered 

field.    Experimental data by Beard (1965), 

theoretical curve  computed by  (87). 
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Fig. 11.  Ratio of extreme variances of the scattered field. 

Experimental data by Beard (1966), theoretical 

curve computed by (66) .  For the reason of the 

discrepancy, see last paragraph of Section 4, p. 21, 
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2 0- 
0min " 1 + K2 

(87) 
o2      - K2 o2

4 max min 

and these values,  using the same multiplicative constant as In Figure 9, 

are plotted against the experimental data (Beard,  1965,  Figure 34) in 

Figure  10. 

Finally,  Figure 11 shows a comparison of K2 ■ 0max^0mln as calcu~ 

lated from  (66) and  (68)  and as measured by Beard (1967,   Figure U). 

Although for large   (ow slnt|0A both theoretical and experimental data 

approach unity,  there is not even qualitative agreement between theory 

and experiment for aw -> 0.    The reason for this discrepancy,  as has al- 

ready been mentioned in the remarks  following  (74),  is that  for aw •* 0, 

the variance ellipse shrinks to a point;  the ratio K2 ■ amax^0min •'•s 

then given by the limit of an indeterminate expression 0/0, which can be 

resolved only after the second application of L'Hdpital's rule, yielding 

a critically sensitive value, which can obviously not be reproduced by a 

theory using approximations such as  those used in the above analysis 

(neglectlon of lateral scattering,   asymptotic methods approximating in- 

tegrals,  Newton's method approximating the location of the saddle point, 

etc.). 

7.     CONCLUSION 

The theory developed in Sections 2 through 5 leads to qualitative 

agreement with,  and provides insight into,  the experimental measurements 

of the phase-quadrature cotrponents scattered by a random rough surface 

as performed by Beard (1965,  1967).    The theory takes into account the 

finite distance between transmitter and receiver;  i.e.,   the sphericity 

of the Incident and scattered waves by using a hybrid geometrical-physi- 

cal-optics approach and leads to a complicated phase distribution of the 

scattered field.    The latter is calculated by use of simplifying assump- 

tions and approximate Integrations.    Unlike the case of plane-wave illu- 

mination and reception in the Fraunhofer zone,  the case under investigation 

^mmmmmmmmm 
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leads  to asymmetrical phase dlstrihutlons even if  the  rough  surface is 

symmetrically distributed,  and  to a rotation of  the variance ellipse 

with  increasing  roughness.     Mathematically,  these  complications  are re- 

flected  in  the quantities  in the  fact   that the cmantities  describing 

the scattered field are determined not by the exponential functions 

appearing in plane-wave scattering, but by confluent hypergeometric 

functions. 
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APPENDIX 

The  Confluent  Hypergeometrie Function tA h *} 
The quantities of interest associated with the scattered field are 

in this report expressed in terms of the confluent hypergeometric func- 

tion 

1\2;   2;  X) 
„ /l.   3.     \      T   ,     2        ,     2    2    xi .     2    2    2    x^ . 
^jU,   2,  xl =• i +    3    X        3    5    2!  ^    3    5    7    3! ''■ •'• 

1 1.3 i.l   5 
i_           2*2 x2        2 ' 2 ' 2 
3X35 2!357 
2 2*2 2 ' 2 * 2 

=   l+-x+ — x2  + — x3+ -i- X4 + 
310 42 216 ' 

which is easily programmed on a digital computer.  However, for quick 

information computations, a short table of iFil"^» T» x) is included 

here, since tables of this function (Airey, 1926, 1927) are not readily 

accessible. 

I 
i 



■■■ 

33 

TABLE 1-A 

X 
lFl\2;  2:  X/ X 

1F1\2:   2; X/ 

0.00 1.00000 1.1 1.52757 
0.02 1.00671 1.2 1.59700 
0.04 1.01349 1.3 1.67129 
0.06 1.02037 1.4 1.75083 
0.08 1.02732 1.5 1.83603 

0.10 1.03436 1.6 1.92736 
0.15 1.05233 1.7 2.02531 
0.20 1.07086 1.8 2.13041 
0.25 1.08997 1.9 2.24325 
0.30 1.10968 2.0 2.36445 

0.35 1.13001 2.2 2.63478 
0.40 1.15098 2.4 2.94764 
0.45 1.17262 2.6 3.31041 
0.50 1.19496 2.8 3.73183 

3.0 4.22221 

0.55 1.21801 3.5 5.83596 
0.60 1.24818 4.0 8.22631 
0.65 1.26638 4.5 11.7973 
0.70 1.29175 5.0 17.1722 
0.75 1.31796 5.5 25.3164 

0.80 1.34503 6.0 37.7301 
0.85 1.37300 6.5 56.7504 
0.90 1.40191 7.0 86.0296 
0.95 1.43178 7.5 131.289 
1.00 1.46265 8.0 201.510 
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